Game Boy: Complete Technical Reference

gekkio
https://gekkio. fi

February 5, 2019

Revision 50

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

https://gekkio.fi
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Preface

0|
IMPORTANT: This document focuses at the mo-
ment on 1st and 2nd generation devices (models
before the Game Boy Color), and some hardware
details are very different in later generations.

Be very careful if you make assumptions about
later generation devices based on this document!

How to read this document

This is something that hasn’t been verified, but would make a lot of sense.

This explains some caveat about this documentation that you should know.

This is a warning about something.

0.1 Formatting of numbers

When a single bit is discussed in isolation, the value looks like this: @, 1.
Binary numbers are prefixed with @b like this: ®b@101101,0b11011, 0b0BAOAVAA. Values are prefixed with
zeroes when necessary, so the total number of digits always matches the number of digits in the value.
Hexadecimal numbers are prefixed with 0x like this: ©x1234, @xDEADBEEF, @xFF@4. Values are prefixed
with zeroes when necessary, so the total number of characters always matches the number of nibbles in the
value.

Examples:
4-bit 8-bit 16-bit
Binary ©b0101 0b10100101 0bRVV101010100101
Hexadecimal 0x5 QxA5 QxQAAS

0.2 Register definitions

Register 0.1: @x1234 - This is a hardware register definition

R/W-0 \ R/W—1 U-1 R-0 \ R-1 \ R-x wW—1 U-0
VALUE<1:0> - BIGVAL<7:5> FLAG —
bit7 | 6 5 4 \ 3 \ 2 1 bit 0

Top row legend:
R Bit can be read.

W Bit can be written. If the bit cannot be read, reading returns a constant value defined in the bit list
of the register in question.

8] Unimplemented bit. Writing has no effect, and reading returns a constant value defined in the bit
list of the register in question.

-n Value after system reset: 0,1, or x.
1 Bit is set.
o Bit is cleared.
X Bit is unknown (e.g. depends on external things such as user input).
Middle row legend:
VALUE<1:0> Bits 1 and 0 of VALUE
- Unimplemented bit
BIGVAL<T:5> Bits 7, 6, 5 of BIGVAL
FLAG Single-bit value FLAG

In this example:
o After system reset, VALUE is b1, BIGVAL is either 0b010 or @b@11, FLAG is @b1.
e Bits 5 and 0 are unimplemented. Bit 5 always returns 1, and bit 0 always returns @.

o Both bits of VALUE can be read and written. When this register is written, bit 7 of the written value goes
to bit 1 of VALUE.

e FLAG can only be written to, so reads return a value that is defined elsewhere.

e BIGVAL cannot be written to. Only bits 5-7 of BIGVAL are defined here, so look elsewhere for the low
bits 0-4.

Contents

Preface

How to read this document

0.1 Formattingof numbers
0.2 Registerdefinitions
Contents

I Game Boy CPU and the Sharp LR35902 instruction set

1 Sharp LR35902 instruction set
1.1 8-bitload and store instructions e e e
1.2 16-bitload and store instructions e
1.3 8-bit arithmeticinstructions e e e
1.4 16-bit arithmeticinstructions e
1.5 Rotate, shift, and bit operation instructions oL L oL oL
1.6 Control flow instructions e e e e

RET . .

RST N . .
1.7 Miscellaneous InStructions o v i e e e e e e e e e e e

II Game Boy CPU peripherals and features

2 Boot ROM
3 DMA (Direct Memory Access)
3.1 Object Attribute Memory (OAM)DMA
OAMDMA addressdecoding e
OAM DMA transfer timing L
OAMDMADbusconflicts

CONTENTS

4

5

6

PPU (Picture Processing Unit)
Port 1 (Joypad, Super Game Boy communication)

Serial communication

III Game Boy game cartridges

7

10

11

12

13

14

15

16

A

MBC1 mapper chip

71 MBClregisters,
7.2 ROMin the 0x0000-0xT7FFF area
ROM banking example1l
ROM banking example2
7.3 RAMin the 0xAQ@Q-0@xBFFF area
RAM banking example1
74 MBC1 multicarts "MBCIM")
ROM banking example1
Detecting multicarts
75 DumpingMBClcarts.

MBC2

MBC3

MBC5

MBCé6

MBC7?7

HuC-1

HuC-3

MMMO1

TAMAS5

Instruction set tables

Appendices

B

C

Memory map tables

Game Boy external bus

C1 Bustimings

Bibliography

18
19

20

21

22
22
23
24
24
24
25
25
25
26
26

27
28
29
30
31
32
33
34
35

37

37
40

45
45

47

Part1

Game Boy CPU and the Sharp LR35902 instruction
set

Chapter 1

Sharp LR35902 instruction set

1.1 8-bit load and store instructions

1.2 16-bit load and store instructions

1.3 8-bit arithmetic instructions

1.4 16-bit arithmetic instructions

1.5 Rotate, shift, and bit operation instructions
1.6 Control flow instructions

JP nn

Unconditional jump to the absolute address specified by the operand nn.

Opcode + data ©b11000011 + LSB of nn + MSB of nn

Length 3 bytes
Duration 4 machine cycles
Flags -

. Purpose —{__Decode Y L[SBofnn [MSBofnn J Internal defay |
Timing Memory —{Read: PC_ [Read: PCT | Read: PCi2 TN
Pseudocode opcode = read(PC++)

if opcode == 0xC3:
nn = unsigned_16(1lsb=read(PC++), msb=read(PC++))
PC = nn
JP HL

Unconditional jump to the absolute address specified by the register HL.

Opcode ©b11101001
Length 1 bytes
Duration 1 machine cycle
Flags -
Timi Purpose
imin
J Memory
Pseudocode opcode = read(PC++)
if opcode == OxE9:
PC = HL

CHAPTER 1. SHARP LR35902 INSTRUCTION SET

In some documentation this instruction is written as JP [HL]. This is very misleading, since brackets
are usually used to indicate a memory read, and this instruction simply copies the value of HL to PC.

JP cc, nn

Conditional jump to the absolute address specified by the operand nn, depending on the condition cc.
Note that the operand (absolute address) is read even when the condition is false!

Opcode + data ©b110cc@1@ + LSB of nn + MSB of nn

Length 3 bytes
Duration 3 machine cycles (cc=false), or 4 machine cycles (cc=true)
Flags -

Purpose — Decode L _LSBofnn | MSBofnn)

Timing (cc=false)

Memory —{__Read: PC_ Y Read: PC+1 | Read: PC+2)

Purpose — Decode L_LSBofnn | MSB of nn__J_Internal delay)
Memory —{Read: PC_ Y Read: PCi1 | Read: PC+2 | |

Timing (cc=true)

Pseudocode opcode = read(PC++)
if opcode in [@xC2, ©xD2, 0xCA, OxDA]:
nn = unsigned_16(1lsb=read(PC++), msb=read(PC++))
if F.check_condition(cc):
PC = nn

JRr

Unconditional jump to the relative address specified by the signed operand r.

Opcode + data ©b00011000 + offset r

Length 2 bytes
Duration 3 machine cycles
Flags -

PUI’pOSG — Decode] Value of r | Internal delay)

Timing Memory —{Read: PC_ [Read: PC+1 RN
Pseudocode opcode = read(PC++)
if opcode == 0x18:
r = signed_8(read(PC++))
PC =PC +r
JRce,

Conditional jump to the relative address specified by the signed operand r, depending on the condition cc.
Note that the operand (relative address offset) is read even when the condition is false!

Opcode + data ©b001ccV0 + offset r

Length 2 bytes
Duration 2 machine cycles (cc=false), or 3 machine cycles (cc=true)
Flags -

Purpose —{_Decode | Valueofr]}
Memory —{Read:PC_ | Read: PC1)

Timing (cc=false)

CHAPTER 1. SHARP LR35902 INSTRUCTION SET

Purpose — Decode] Value of r] Internal delay)

Memory —{_Read PC_] Read: PCr1 |

Timing (cc=true)

Pseudocode opcode = read(PC++)
if opcode in [0x20, 0x30, 0x28, 0x38]:
r = signed_8(read(PC++))
if F.check_condition(cc):
PC =PC +r

CALL nn

Unconditional function call to the absolute address specified by the operand nn.

Opcode + data ©b11001101 + LSB of nn + MSB of nn

Length 3 bytes
Duration 6 machine cycles
Flags -
L. Purpose —(Decode | LSBofnn [MSBofnn) Internal delay J MSB of PC+3 | LSB of PC+3 |
Timing

Memory —{Read: PC_ | Read: PCiT | Read: PC+2) Write: SP-1_)J_ Write: SP-2)

Pseudocode opcode = read(PC++)
if opcode == 0xCD:
nn = unsigned_16(1lsb=read(PC++), msb=read(PC++))
write(——SP, msb(PC))
write(--SP, 1sb(PC))
PC = nn

CALL cc, nn

Conditional function call to the absolute address specified by the operand nn, depending on the condition cc.

Note that the operand (absolute address) is read even when the condition is false!

Opcode + data ©b110cc100 + LSB of nn + MSB of nn

Length 3 bytes
Duration 3 machine cycles (cc=false), or 6 machine cycles (cc=true)
Flags -

Purpose —(Decode [_LSBofnn__[_MSBofnn_)

Memory —{Read: PC_ Y Read: PCIT | Read: PCi2 |

Timing (cc=false)

Purpose — Decode] LSBofnn | MSBofnn) Internal delay \ MSB of PC+3 [LSB of PC+3)

Timing (cc=true)

Memory —(Read: PC__| Read: PC+1 | Read: PC+2)N Write: SP-1_)| Write: 5P-2)

Pseudocode opcode = read(PC++)
if opcode in [@xC4, ©xD4, 0xCC, 0xDC]:
nn = unsigned_16(1lsb=read(PC++), msb=read(PC++))
if F.check_condition(cc):
write(——SP, msb(PC))
write(—-SP, 1sb(PC))
PC = nn

CHAPTER 1. SHARP LR35902 INSTRUCTION SET

RET

Unconditional return from function.

Opcode
Length
Duration

Flags
Timing

Pseudocode

RET cc

0b11001001
1 byte

4 machine cycles

Purpose —{Decode | [SBofPC | WSB of PC | Tnternal delay |

Memory —{Read: PC_ | Read: SP | Read: SP1 IR

opcode = read(PC++)
if opcode == 0xC9:
PC = unsigned_16(1sb=read(SP++), msb=read(SP++))

Conditional return from function, depending on the condition cc.

Opcode
Length
Duration

Flags

Timing (cc=false)

Timing (cc=true)

Pseudocode

RETI

0b110cc00
1 byte

2 machine cycles (cc=false), or 5 machine cycles (cc=true)

Purpose —{Decode | Tnternal deflay)

Memory

Purpose —{Decode] Tnternaldelay [LSB of PC_) MSB of PC_) Tnternal delay }

Memory Read: PC Read: SP__)_Read: SP+1 I

opcode = read(PC++)
if opcode in [0xCO, 0xDQ, ©xC8, 0xD8]:
if F.check_condition(cc):

PC = unsigned_16(1lsb=read(SP++), msb=read(SP++))

Unconditional return from function. Also enables interrupts by setting IME=1.

Opcode
Length
Duration
Flags
Timing

Pseudocode

0b11011001
1 byte

4 machine cycles

Purpose — Decode J_LSBof PC_J MSB of PC_) Internal delay |

Memory —{_Read: PC_ [Read: SP__ Read: SP+1 |

opcode = read(PC++)

if opcode == 0xD9:
PC = unsigned_16(lsb=read(SP++), msb=read(SP++))
IME = 1

10

CHAPTER 1. SHARP LR35902 INSTRUCTION SET 11

RSTn

Unconditional function call to the absolute fixed address defined by the opcode.

Opcode Ob11xxx111
Length 1 byte
Duration 4 machine cycles
Flags -

Purpose — Decode [Internal delay J MSB of PC+1) LSB of PC+1 |
Timing

Memory Write: SP-1_J Write: SP-2_)
Pseudocode opcode = read(PC++)

if opcode in [@xC7, ©xD7, OxE7, OxF7, OxCF, OxDF, OxEF, OxFF]:
n = rst_address(opcode)
write(—-SP, msb(PC))
write(—-SP, 1sb(PC))
PC = unsigned_16(1lsb=n, msb=0x00)

1.7 Miscellaneous instructions

HALT
STOP
DI

Disables interrupt handling by setting IME=0 and cancelling any scheduled effects of the EI instruction if any.

Opcode ©b11110011
Length 1 byte
Duration 1 machine cycle
Flags -
Timi Purpose
imin
J Memory
Pseudocode opcode = read(PC++)
if opcode == 0xF3:
IME = 0
EIl

Schedules interrupt handling to be enabled after the next machine cycle.

Opcode ob11111011

Length 1 byte

Duration 1 machine cycle (+ 1 machine cycle for the effect)
Flags -

Purpose

Timin
8 Memory
Pseudocode opcode = read(PC++)

if opcode == OxFB:
IME_scheduled = true

CHAPTER 1. SHARP LR35902 INSTRUCTION SET

CCF
Flips the carry flag, and clears the N and H flags.

Opcode ©0bo0111111
Length 1 byte

Duration 1 machine cycle
Flags N=0,H=0,C=%

Purpose

Timin
8 Memory
Pseudocode opcode = read(PC++)
if opcode == 0x3F:
flags.N = 0
flags.H = 0
flags.C = ~flags.C
SCF

Sets the carry flag, and clears the N and H flags.

Opcode 0bo110111
Length 1 byte
Duration 1 machine cycle
Flags N=0,H=0,C=1
Timi Purpose
imin
5 Memory
Pseudocode opcode = read(PC++)
if opcode == 0x37:
flags.N = 0
flags.H = 0
flags.C = 1
NOP

12

No-operation. This instruction doesn’t do anything, but can be used to add a delay of one machine cycle and

increment PC by one.

Opcode ©b00VVRY
Length 1 byte
Duration 1 machine cycle
Flags -

Purpose

Timin
8 Memory
Pseudocode opcode = read(PC++)

if opcode == 0x00:
// nothing

CHAPTER 1. SHARP LR35902 INSTRUCTION SET

DAA
Opcode
Length
Duration

Flags
Timing

CPL

Flips all the bits in the A register, and sets the N and H flags.

Opcode
Length
Duration
Flags
Timing

Pseudocode

0bo0100111

1 byte

1 machine cycle
Z=%H=0,C=%

Purpose
Memory

0b0101111

1 byte

1 machine cycle
N=1H=1

Purpose
Memory

opcode = read(PC++)
if opcode == 0Ox2F:

A = ~A
flags.N =1
flags.H =1

13

Part 11

Game Boy CPU peripherals and features

14

Chapter 2

Boot ROM

Register 2.1: @xFF50 - BOOT - Boot ROM lock register

u-1 u-1 u-1 u-1 U-1 u-1 u-1 R/W-0
- - = = BOOT_OFF
bit 7 6 5 4 3 2 1 bit 0
bit 7-1 Unimplemented: Read as1

bit 0

BOOT_OFF: Boot ROM lock bit
@b1= Boot ROM is disabled and 0x0000-0x@0F F works normally.
©bo= Boot ROM is active and intercepts accesses to @x0000—-0xQ0OFF .

BOOT_OFF can only transition from @b@ to @b1, so once @b1 has been written, the boot ROM is
permanently disabled until the next system reset. Writing @@ when BOOT_OFF is @b@ has no

effect and doesn’t lock the boot ROM.

15

Chapter 3

DMA (Direct Memory Access)

3.1 Object Attribute Memory (OAM) DMA

OAM DMA is a high-throughput mechanism for copying data to the OAM area (a.k.a. Object Attribute Mem-
ory, a.k.a. sprite memory). It can copy one byte per machine cycle without involving the CPU at all, which
is much faster than the fastest possible memcpy routine that can be written with the LR35902 instruction set.
However, a transfer cannot be cancelled and the transfer length cannot be controlled, so the DMA transfer
always updates the entire OAM area (= 160 bytes) even if you actually want to just update the first couple of
bytes.

The Game Boy CPU chip contains a DMA controller that coordinates transfers between a source area and the
OAM area independently of the CPU. While a transfer is in progress, it takes control of the source bus and the
OAM area, so some precaution is needed with memory accesses (including instruction fetches) to avoid OAM
DMA bus conflicts. OAM DMA uses a different address decoding scheme than normal memory accesses, so
the source bus is always either the external bus or the video RAM bus, and the contents normally visible to the
CPU in the 0xFEQQ-OxFFFF address range cannot be used as a source for OAM DMA transfers.

The upper 8 bits of the OAM DMA source address are stored in the DMA register, while the lower 8 bits
used by both the source and target address are stored in the DMA controller and are not accessible directly. A
transfer always begins with 0x00 in the lower bits and copies exactly 160 bytes, so the lower bits are never in
the 0xA@-0xFF range.

Writing to the DMA register updates the upper bits of the DMA source address and also triggers an OAM
DMA transfer request, although the DMA transfer does not begin immediately.

Register 3.1: @xFF46 - DMA - OAM DMA control register

RW-x | RM-x | RM-x [RM-x [RM-x | RM-x | RM-x | R/NW-=x
DMA<T:0>
bit7 | 6 \ 5 \ 4 \ 3 \ 2 \ 1 | bit0
bit 0 DMA<7:0>: OAM DMA source address

Specifies the top 8 bits of the OAM DMA source address.

Writing to this register requests an OAM DMA transfer, but it’s just a request and the actual DMA
transfer starts with a delay.

Reading this register returns the value that was previously written to the register. The stored value
is not cleared on reset, so the initial value before the first write is unknown and should not be relied
on.

Avoid writing @xE@-0xFF to the DMA register, because some poorly designed flash carts can trigger
bus conflicts or other dangerous behaviour.

OAM DMA address decoding

The OAM DMA controller uses a simplified address decoding scheme, which leads to some addresses being
unusable as source addresses. Unlike normal memory accesses, OAM DMA transfers interpret all accesses in

16

CHAPTER 3. DMA (DIRECT MEMORY ACCESS) 17

the @xAQQO-OxFFFF range as external RAM transfers. For example, if the OAM DMA wants to read 0xFF0,
it will output @xFFO® on the external address bus and will assert the external RAM chip select signal. The P1
register which is normally at @xFF@@ is not involved at all, because OAM DMA address decoding only uses the
external bus and the video RAM bus. Instead, the resulting behaviour depends on several factors, including
the connected cartridge. Some flash carts are not prepared for this unexpected scenario, and a bus conflict or
worse behaviour can happen.

Table 3.1: OAM DMA address decoding scheme

DMA register value Used bus Asserted chip select signal
0x00-0xTF external bus external ROM (A15)
0x80-0x9F video RAM bus video RAM (MCS)
0xAQ-0xFF external bus external RAM (CS)

OAM DMA transfer timing

TODO

OAM DMA bus conflicts

TODO

Chapter 4

PPU (Picture Processing Unit)

Register 4.1: 0xFF40 - LCDC - PPU control register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LCD_EN WIN_MAP WIN_EN | TILE_SEL | BG_MAP | OBJ_SIZE | OBJ_EN BG_EN

bit 7 6 5 4 3 2 1 bit 0

Register 4.2: 0xFF41 - LCDC - PPU status register
U-1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 | R/W-0
- INTR_LYC | INTR_M2 [INTR_M1 INTR_MO | LYC_STAT LCD_MODE <1 :0>
bit 7 6 5 4 3 2 1 | bitd
Register 4.3: 0xFF42 - SCY - Vertical scroll register

R/W-0 RW-0 | RM-0 | RM-0 | RM-0 | R/M-0 | R/M-0 | R/W-0
SCY<T:0>

bit 7 6 \ 5 \ 4 \ 3 \ 2 \ 1 | bitd

Register 4.4: 0xFF43 - SCX - Horizontal scroll register

R/W-0 RW-0 | RM-0 [RM-0 | RM-0 | RM-0 | R/M-0 | R/W-0
SCX<T:0>

bit 7 6 \ 5 \ 4 \ 3 \ 2 \ 1 | bitd

Register 4.5: @xFF43 - LY - Scanline register

R/W-0 RW-0 | RM-0 [RM-0 | RM-0 | RM-0 | R/M-0 | R/W-0
LY<7:0>

bit 7 6 \ 5 \ 4 \ 3 \ 2 \ 1 | bitd

Register 4.6: @xFF44 - LYC - Scanline compare register

R/W-0 RW-0 | RM-0 | RM-0 | RM-0 | RM-0 | R/M-0 | R/W-0
LYC<T7:0>

bit 7 6 \ 5 \ 4 \ 3 \ 2 \ 1 | bitd

18

Chapter 5

Port 1 (Joypad, Super Game Boy communication)

Register 5.1: @xFF0Q - P1 - Joypad/Super Game Boy communication register

u-1 u-1 W-0 W-0 R-x R-x R-x R-x
= = P15 P14 P13 P12 P11 P10
bit 7 6 5 4 3 2 1 bit 0
bit 7-6 Unimplemented: Read as 1
bit 5 P15:
bit 4 P14:
bit 3 P13:
bit 2 P12:
bit 1 P11:
bit 0 P10:

19

Chapter 6

Serial communication

Register 6.1: @xFFQ1 - SB - Serial data register

RW0 | RW0 [RW-0 | RM-0 | R/W-0 R/W-0 R/W-0 R/W-0
SB<7:0>
bit7 | 6 \ 5 \ 4 \ 3 2 1 bit 0
bit 7-0 SB<7:0>: Serial data
Register 6.2: @xFF@2 - SC - Serial control register
R/W-0 u-1 u-1 u-1 u-1 u-1 u-1 R/W-0
SIO_EN = = = = = = SIO_CLK
bit7 6 5 4 3 2 1 bit 0
bit 7 SIO_EN:

bit 6-1 Unimplemented: Read as 1
bit 0 SIO_CLK:

20

Part II1

Game Boy game cartridges

21

Chapter 7

MBC1 mapper chip

The majority of games for the original Game Boy use the MBC1 chip. MBC1 supports ROM sizes up to 16 Mbit
(128 banks of 9x4000 bytes) and RAM sizes up to 256 Kbit (4 banks of 0x2000 bytes). The information in this
section is based on my MBC1 research, Tauwasser’s research notes [3], and Pan Docs [2].

71 MBC1 registers

These registers don’t have any standard names and are usually referred to using their address ranges
or purposes instead. This document uses names to clarify which register is meant when referring to
one.

The MBC1 chip includes four registers that affect the behaviour of the chip. Of the cartridge bus address
signals, only A13-A15 are connected to the MBC, so lower address bits don’t matter when the CPU is accessing
the MBC and all registers are effectively mapped to address ranges instead of single addresses. All registers are
smaller than 8 bits, and unused bits are simply ignored during writes. The registers are not directly readable.

Register 7.1: 0x0000-0x1FFF - RAM_EN - MBC1 RAM enable register

U U U U -0 | weo | weo | W
RAM_EN<3:0>
bit 7 6 5 4 3 \ 2 \ 1 | bitd
bit 7-4 Unimplemented: Ignored during writes

bit 3-0 RAM_EN<3:0>: RAM enable register
@b1010= enable access to cartridge RAM
All other values disable access to cartridge RAM

The RAM_EN register is used to enable access to the cartridge SRAM if one exists on the cartridge circuit
board. RAM access is disabled by default but can be enabled by writing to the 0x0000-0x1FFF address range
a value with the bit pattern @b1010 in the lower nibble. Upper bits don’t matter, but any other bit pattern in
the lower nibble disables access to RAM.

When RAM access is disabled, all writes to the external RAM area 0xAQ0Q—-@xBFFF are ignored, and reads
return OxFF. Pan Docs recommends disabling RAM when it’s not being accessed to protect the contents [2].

We don’t know the physical implementation of RAM_EN, but it’s certainly possible that the @b1010 bit
pattern check is done at write time and the register actually consists of just a single bit.

22

CHAPTER 7. MBC1 MAPPER CHIP 23

Register 7.2: 0x2000-0x3FFF - BANK1 - MBC1 bank register 1

u U U w2 | we | weo | wo | wit
BANK1<4:0>
bit 7 6 5 4 \ 3 \ 2 \ 1 | bit0
bit 7-5 Unimplemented: Ignored during writes

bit 4-0 BANK1<4:0>: Bank register 1
Never contains the value 0b00000.
If @b00OEQ is written, the resulting value will be b1 instead.

The 5-bit BANK1 register is used as the lower 5 bits of the ROM bank number when the CPU accesses the
0x4000-0xTFFF memory area.

MBC1 doesn’t allow the BANKI register to contain zero (bit pattern @b@2@@0), so the initial value at reset
is @b00VR1 and attempting to write b0 will write @001 instead. This makes it impossible to read
banks 0x00, 0x20, 0x40 and 0x60 from the 0x4000-0xTFFF memory area, because those bank numbers have
©b@VRY in the lower bits. Due to the zero value adjustment, requesting any of these banks actually requests
the next bank (e.g. @x21 instead of ©x20).

Register 7.3: 0x4000-0x5FFF - BANK2 - MBC1 bank register 2

U U U U U U W-0 \ W-0
BANK2<1:0>
bit 7 6 5 4 3 2 1 | bit0
bit 7-2 Unimplemented: Ignored during writes

bit 1-0 BANK2<1:0>: Bank register 2

The 2-bit BANK? register can be used as the upper bits of the ROM bank number, or as the 2-bit RAM bank
number. Unlike BANK1, BANK?2 doesn’t disallow zero, so all 2-bit values are possible.

Register 7.4: 0x6000-0x7FFF - MODE - MBC1 mode register

U U U U U U U W-0
MODE
bit7 6 5 4 3 2 1 bit 0
bit 7-1 Unimplemented: Ignored during writes
bit 0 MODE: Mode register

Ob1= BANK?2 affects accesses to 0x0000-0x3FFF, 0x4000-0xTFFF , 0xAQRO-OxBFFF
©bd= BANK?2 affects only accesses to 0x4000—-0x7FFF

The MODE register determines how the BANK2 register value is used during memory accesses.

Most documentation, including Pan Docs [2], calls value @0 ROM banking mode, and value b1 RAM
banking mode. This terminology reflects the common use cases, but "RAM banking" is slightly mis-

leading because value @b1 also affects ROM reads in multicart cartridges and cartridges that have a 8
or 16 Mbit ROM chip.

7.2 ROM in the 0x0000-0x7FFF area

In MBC1 cartridges, the A0-A13 cartridge bus signals are connected directly to the corresponding ROM pins,
and the remaining ROM pins (A14-A20) are controlled by the MBC1. These remaining pins form the ROM

CHAPTER 7. MBC1 MAPPER CHIP 24

bank number.

When the 0x0000-0x3FFF address range is accessed, the effective bank number depends on the MODE
register. In MODE 0 the bank number is always 0, but in MODE 1 it’s formed by shifting the BANK2 register
value left by 5 bits.

When the 0x4000-0x7FFF addess range is accessed, the effective bank number is always a combination of
BANK1 and BANK?2 register values.

If the cartridge ROM is smaller than 16 Mbit, there are less ROM address pins to connect to and therefore
some bank number bits are ignored. For example, 4 Mbit ROMs only need a 5-bit bank number, so the BANK2
register value is always ignored because those bits are simply not connected to the ROM.

Table 7.1: Mapping of physical ROM address bits in MBC1 carts

Bank number Address within bank
ROM address bits 20-19 18-14 13-0
0x0000-0x3FFF, MODE = ©b0O 0boo @bV A<13:0>
0x00-0x3FFF, MODE = @b1 BANK2 @bV A<13:0>
0x4000-0xTFFF BANK?2 BANK1 A<13:0>

ROM banking example 1

Let’s assume we have previously written @x12 to the BANKI register and 0b@1 to the BANK?2 register. The
effective bank number during ROM reads depends on which address range we read and on the value of the
MODE register:

Value of the BANK1 register
©0b 10010

Value of the BANK2 register
b 01

Effective ROM bank number (reading 0x4000-0x7FFF)
Ob 01 10010 (= 50 = 0x32)

Effective ROM bank number (reading 0x0000-0x3FFF, MODE = 0b0)
Ob 00 00RO (= 0 = 0x00)

Effective ROM bank number (reading 0x0000-0x3FFF, MODE = 0b1)
0b @1 00000 (= 32 = 0x20)

ROM banking example 2

Let’s assume we have previously requested ROM bank number 68, MBC1 mode is @b®, and we are now
reading a byte from 0x72A7. The actual physical ROM address that will be read is going to be 0x1132A7 and
is constructed in the following way:

Value of the BANK1 register ©b/ 00100

Value of the BANK2 register ©ob 10

ROM bank number 0b 10 00100 (= 68 = 0x44)

Address being read Ob 01 11 0010 1010 0111 (= @xT2AT)

Actual physical ROM address ©b 1 @ @01 @0 11 0010 1010 0111 (= Ox1132AT)

7.3 RAM in the 0xA000-0xBFFF area

Some MBC1 carts include SRAM, which is mapped to the 0xA@00-0xBFFF area. If no RAM is present, or RAM
is not enabled with the RAM_EN register, all reads return @xFF and writes have no effect.

On boards that have RAM, the A0-A12 cartridge bus signals are connected directly to the corresponding
RAM pins, and pins A13-A14 are controlled by the MBC1. Most of the time the RAM size is 64 Kbit, which
corresponds to a single bank of 0x2000 bytes. With larger RAM sizes the BANK2 register value can be used
for RAM banking to provide the two high address bits.

CHAPTER 7. MBC1 MAPPER CHIP 25

In MODE 0 the BANK2 register value is not used, so the first RAM bank is always mapped to the 0xA@00-
OxBFFF area. In MODE 1 the BANK2 register value is used as the bank number.

Table 7.2: Mapping of physical RAM address bits in MBC1 carts

Bank number Address within bank
RAM address bits 14-13 12-0
0xAQQO-0xBFFF, MODE = @bo @b0o A<12:0>
0xAQVO-0xBFFF, MODE = ©b1 BANK2 A<12:0>

RAM banking example 1

Let’s assume we have previously written @b10 to the BANK2 register, MODE is @b1, RAM_EN is ©b1010 and
we are now reading a byte from ©xB123. The actual physical RAM address that will be read is going to be
0x5123 and is constructed in the following way:

Value of the BANK2 register ob 10
Address being read 0b 101 1 0001 0010 0011 (= 0xB123)

Actual physical RAM address ©b 10 1 0001 0010 0011 (= 0x5123)

7.4 MBC1 multicarts ("MBC1M")

MBC1 is also used in a couple of "multicart” cartridges, which include more than one game on the same
cartridge. These cartridges use the same regular MBC1 chip, but the circuit board is wired a bit differently.
This alternative wiring is sometimes called "MBC1M", but technically the mapper chip is the same. All known
MBC1 multicarts use 8 Mbit ROMs, so there’s no definitive wiring for other ROM sizes.

In MBC1 multicarts bit 4 of the BANKI1 register is not physically connected to anything, so it’s skipped. This
means that the bank number is actually a 6-bit number. In all known MBC1 multicarts the games reserve 16
banks each, so BANK2 can actually be considered "game number", while BANKI is the internal bank number
within the selected game. At reset BANK2 is @b@@, and the "game" in this slot is actually a game selection
menu. The menu code selects MODE 1 and writes the game number to BANK2 once the user selects a game.

From a ROM banking point of view, multicarts simply skip bit 4 of the BANK1 register, but otherwise the
behaviour is the same. MODE 1 guarantees that all ROM accesses, including accesses to 9x0000-0x3FFF, use
the BANK?2 register value.

Table 7.3: Mapping of physical ROM address bits in MBC1 multicarts

Bank number Address within bank
ROM address bits 19-18 17-14 13-0
0x00-0x3FFF, MODE = @bo 0bo0o @b A<13:0>
0x0000-0x3FFF, MODE = ©b1 BANK?2 14]01614144] A<13:0>
0x4000-0xTFFF BANK?2 BANK1<3:0> A<13:0>

ROM banking example 1

Let’s assume we have previously requested "game number" 3 (= @b11) and ROM bank number 29 (= @x1D),
MBC1 mode is @b1, and we are now reading a byte from @x6C15. The actual physical ROM address that will
be read is going to be @xF6C15 and is constructed in the following way:

Value of the BANK1 register ob1 1101

Value of the BANK2 register ~ ©b 11

ROM bank number 0b 11 1401 (= 61 = 0x3D)

Address being read Ob 21 10 1100 0001 @101 (= 0x6C15)

Actual physical ROM address ©b 11 11 @01 10 1100 0001 0101 (= ©xF6C15)

CHAPTER 7. MBC1 MAPPER CHIP 26

Detecting multicarts

MBC1 multicarts are not detectable by simply looking at the ROM header, because the ROM type value is just
one of the normal MBC1 values. However, detection is possible by going through BANK2 values and looking
at "bank 0" of each multicart game and doing some heuristics based on the header data. All the included
games, including the game selection menu, have proper header data. One example of a good heuristic is logo
data verification.

So, if you have a 8 Mbit cart with MBC1, first assume that it’s a multicart and bank numbers are 6-bit
values. Set BANKI to zero and loop through the four possible BANK2 values while checking the data at
0x0104-0x0133. In other words, check logo data starting from physical ROM locations 0x00104, 0x40104,
0x80104, and 0xC0104. If proper logo data exists with most of the BANK2 values, the cart is most likely a
multicart. Note that multicarts can just have two actual games, so one of the locations might not have the
header data in place.

7.5 Dumping MBCI1 carts

MBC1 cartridge dumping is fairly straightforward with the right hardware. The total number of banks is read
from the header, and each bank is read one byte at a time. However, BANK1 register zero-adjustment and
multicart cartridges need to be considered in ROM dumping code.

Banks 0x20, 0x40 and ©x60 can only be read from the 0x0000-0x3FFF memory area and only when MODE
register value is @b1. Using MODE 1 has no undesirable effects when doing ROM dumping, so using it at all
times is recommended for simplicity.

Multicarts should be detected using the logo check described earlier, and if a multicart is detected, BANK1
should be considered a 4-bit register in the dumping code.

write_byte(0x6000, 0x01)
for bank in range(@, num_banks):
write_byte(0x2000, bank)
if is_multicart:
write_byte(0x4000, bank >> 4)
bank_start = 0x4000 if bank & 0x0f else 0x0000
else:
write_byte(0x4000, bank >> 5)
bank_start = 0x4000 if bank & 0Ox1f else 0x0000
for addr in range(bank_start, bank_start + 0x4000):
buf += read_byte(addr)

Listing 1: Python pseudo-code for MBC1 ROM dumping

Chapter 8

MBC2

TODO.

27

Chapter 9

MBC3

TODO.

28

Chapter 10

MBC5

TODO.

29

Chapter 11

MBCé6

TODO.

30

Chapter 12

MBC7

TODO.

31

Chapter 13

HuC-1

TODO.

32

Chapter 14

HuC-3

TODO.

33

Chapter 15

MMMO01

TODO.

34

Chapter 16

TAMADS

TODO.

35

Appendices

36

Appendix A

Instruction set tables

These tables include all the opcodes in the Sharp LR35902 instruction set. The style and layout of these tables
was inspired by the opcode tables available at pastraiser.com [1].

37

Table A.1: Sharp LR35902 instruction set

unsigned 8-bit immediate data

unsigned 16-bit immediate data
signed 8-bit immediate data

signed 8-bit immediate data, relative to PC

SHIAVL LS NOLLDNYISNI 'V XIANAIdY

8¢

Table A.2: Sharp LR35902 CB-prefixed instructions

SHIAVL LS NOLLDNYISNI 'V XIANAIdY

6¢

Appendix B

Memory map tables

40

Table B.1: 0xFFxx registers: OxFFOQ-0xFF1F

bit 7

5

4

3

2

1

bit @

OxFFOO

P1

P15 buttons

P14 d-pad

P13 © start

P12

© select

P11 o8

P10 © A

OxFFO1

SB

SB<T7:0>

OxFFO2

SC

SIO_EN

SIO_FAST

SIO_CLK

OxFFO3

OxFF04

DIV

DIVH<T:0>

OxFFO5

TIMA

TIMA<T:0>

OxFFO6

TMA

TMA<T: 0>

OxFFOT

TAC

TAC_EN

TAC_CLK<1:0>

OxFFO8

OxFFQ9

OxFFOA

OxFFoB

OxFFOC

OxFF@D

OxFFOE

OxFFOF

IF

IF_JOYPAD

IF_SERIAL

IF_

TIMER

IF_STAT

IF_VBLANK

OxFF10

NR10

OxFF11

NR11

OxFF12

NR12

OxFF13

NR13

OxFF14

NR14

OxFF15

OxFF16

NR21

OxFF17

NR22

OxFF18

NR23

OxFF19

NR24

OxFF1A

NR30

OxFF1B

NR31

OxFF1C

NR32

OxFF1D

NR33

OxFF1E

NR34

OxFF1F

bit 7

bit ©

SHTAVL dVIN AAOWHW "d XIANAddV

A7

Table B.2: 0xFFxx registers: OxFF20-0xFF3F

bit 7

5

4

3

bit @

OxFF20

NR41

OxFF21

NR42

OxFF22

NR43

OxFF23

NR44

OxFF24

NR50

OxFF25

NR51

OxFF26

NR52

OxFF27

OxFF28

OxFF29

OxFF2A

OxFF2B

OxFF2C

OxFF2D

OxFF2E

OxFF2F

OxFF30

WAVO0

OxFF31

WAVO1

OxFF32

WAVO2

OxFF33

WAVQ3

OxFF34

WAVO4

OxFF35

WAV@S

OxFF36

WAV06

OxFF37

WAVOT

OxFF38

WAV08

OxFF39

WAVQ9

OxFF3A

WAV10

OxFF3B

WAV11

OxFF3C

WAV12

©xFF3D

WAV13

OxFF3E

WAV14

OxFF3F

WAV15

bit 7

bit ©

SHTAVL dVIN AAOWHW "d XIANAddV

[4%

Table B.3: 0xFFxx registers: OxFF40-0xFF5F

bit 7

6

5

4

3

2

1 bit @

OxFF40

LCDC

LCD_EN

WIN_MAP

WIN_EN

TILE_SEL

BG_MAP

OBJ_SIZE

OBJ_EN BG_EN

OxFF41

STAT

INTR_LYC

INTR_M2

INTR_M1

INTR_MO

LYC_STAT

LCD_MODE<1:0>

OxFF42

SCY

OxFF43

SCX

OxFF44

LY

OxFF45

LYC

OxFF46

DMA

DMA<

7:0>

OxFF47

BGP

OxFF48

OBPQ

OxFF49

OBP1

OxFF4A

wY

OxFF4B

WX

OxFF4C

2227

OxFF4D

KEY1

KEY1_FAST

KEY1_EN

OxFF4E

OxFF4F

VBK

VBK<1:0>

OxFF50

BOOT

BOOT_OFF

OxFF51

HDMA1

OxFF52

HDMAZ2

OxFF53

HDMAS

OxFF54

HDMA4

OxFF55

HDMAS

OxFF56

RP

OxFF57

OxFF58

OxFF59

OxFF5A

OxFF5B

OxFF5C

OxFF5D

OxFF5E

OxFF5F

bit 7

1 bit ©

SHTAVL dVIN AAOWHW "d XIANAddV

194

Table B.4: OxFFxx registers: OxFF60-0xFFTF, @xFFFF

bit 7 6 \

5 \ 4

3

bit @

OxFF60

OxFF61

OxFF62

OxFF63

OxFF64

OxFF65

OxFF66

OxFFOET

OxFF68

BCPS

OxFF69

BCPD

OxFFOA

OCPS

OxFF6B

OCPD

OxFF6EC

7?7?77

OxFF6D

OxFFO6E

OxFF6F

OxFFT70

SVBK

SVBK«<1:

2>

OxFFT1

OxFFT2

?2?277?

OxFFT3

22?7

OxFFT74

??277?

OxFFT75

???7?

OxFF76

PCM12

PCM12_CH2

PCM12_CH1

OxFFT7

PCM34

PCM34_CH4

PCM34_CH3

OxFFT78

OxFFT9

OxFFTA

OxFFTB

OxFFTC

OxFF7D

OxFFTE

OxFFTF

OxXFFFF

IE

IE_UNUSED<2:0>

IE_JOYPAD

IE_SERIAL

IE_TIMER

IE_STAT

IE_VBLANK

bit 7 6

) 4

3

2

1

bit @

SHTAVL dVIN AAOWHW "d XIANAddV

4%

Appendix C

Game Boy external bus

C.1 Bus timings

CLK 4MHz
PHI 1MHz
A0-Al4
RD]

WR

Al5 _]

CsS

Data

Figure C.1: External bus idle machine cycle

CLK 4MHz I l I I CLK 4MHz I I I I
PHI 1MHz - PHI 1MHz
A0-Al4 A0-A14 [adar)
RD RD 1
WR WR
Al5 T 1 THIH Al5 _]
CS] c¢Gs T
Data —{datal |- Data ——{data’ }—
(a) 0x0-xTFFF! (b) 0xAQQ-OxFDFF
CLK

PHI

4MHz I I I I
1MHz

A0-Al4 [addr)

RD]
WR
Al5 _]
CS]
Data

(c) 0xFEQQ-OxFFFF

Figure C.2: External bus CPU read machine cycles

45

APPENDIX C. GAME BOY EXTERNAL BUS 46

CLK 4MHz l I I I CLK 4MHz l I I I
PHI 1IMHz PHI 1IMHz -

AO-Al4 AO-Al4 B)
RD AT L RD A L
WR 7T LT WR [L__ T
Als T L [Al5 _]
cs ¢S 1T
Data ——{(Cdaa - Data ——{(Tdaa |-

(a) 0x0000-OX TFFF2 (b) 0xAQ@O-OxF DFF

CLK 4MHz l I I I
PHI 1MHz

A0-Al4 ‘
RD]
WR
Al5 _]
CS 1
Data

(c) OXxFEQO-QXFFFF

Figure C.3: External bus timings for CPU write cycles

1 Does not apply to 0x0000-0x00FF reads while the boot ROM is enabled. Boot ROM accesses do not affect the external bus, so it is
in the idle state.

2 Does not apply to 0x0000-0x00FF writes while the boot ROM is enabled. Boot ROM accesses do not affect the external bus, so it is
in the idle state.

Bibliography

[1] Gameboy CPU (LR35902) instruction set. http://www.pastraiser.com/cpu/gameboy/gameboy_
opcodes.html.

[2] Pan of ATX, Marat Fayzullin, Felber Pascal, Robson Paul, and Korth Martin. Pan Docs - Everything You
Always Wanted To Know About GAMEBOY. http://bgb.bircd.org/pandocs.htm.

[3] Tauwasser. MBC1 - Tauwasser’s Wiki. https://wiki.tauwasser.eu/view/MBC1.

47

http://www.pastraiser.com/cpu/gameboy/gameboy_opcodes.html
http://www.pastraiser.com/cpu/gameboy/gameboy_opcodes.html
http://bgb.bircd.org/pandocs.htm
https://wiki.tauwasser.eu/view/MBC1

	Preface
	How to read this document
	0.1 Formatting of numbers
	0.2 Register definitions

	Contents
	I Game Boy CPU and the Sharp LR35902 instruction set
	1 Sharp LR35902 instruction set
	1.1 8-bit load and store instructions
	1.2 16-bit load and store instructions
	1.3 8-bit arithmetic instructions
	1.4 16-bit arithmetic instructions
	1.5 Rotate, shift, and bit operation instructions
	1.6 Control flow instructions
	JP nn
	JP HL
	JP cc, nn
	JR r
	JR cc, r
	CALL nn
	CALL cc, nn
	RET
	RET cc
	RETI
	RST n

	1.7 Miscellaneous instructions
	HALT
	STOP
	DI
	EI
	CCF
	SCF
	NOP
	DAA
	CPL

	II Game Boy CPU peripherals and features
	2 Boot ROM
	3 DMA (Direct Memory Access)
	3.1 Object Attribute Memory (OAM) DMA
	OAM DMA address decoding
	OAM DMA transfer timing
	OAM DMA bus conflicts

	4 PPU (Picture Processing Unit)
	5 Port 1 (Joypad, Super Game Boy communication)
	6 Serial communication

	III Game Boy game cartridges
	7 MBC1 mapper chip
	7.1 MBC1 registers
	7.2 ROM in the 0x0000-0x7FFF area
	ROM banking example 1
	ROM banking example 2

	7.3 RAM in the 0xA000-0xBFFF area
	RAM banking example 1

	7.4 MBC1 multicarts ("MBC1M")
	ROM banking example 1
	Detecting multicarts

	7.5 Dumping MBC1 carts

	8 MBC2
	9 MBC3
	10 MBC5
	11 MBC6
	12 MBC7
	13 HuC-1
	14 HuC-3
	15 MMM01
	16 TAMA5

	Appendices
	A Instruction set tables
	B Memory map tables
	C Game Boy external bus
	C.1 Bus timings

	Bibliography

