Revert the Metal Experiment (#701)

Metal sounded like a good idea to get in the emulator but frankly I
underestimated just how experimental and not ready it was.
From my write up in the Discord:
```
As is, Metal supports only a few games.
The games it does support freeze on first use of not playing them via Vulkan, because shader translation is broken.
So you need to use a dirty hack to not delete all your shaders.
Not to mention it breaks many games via MoltenVK because of changes to the shared GPU code.

Merging Metal seemed like a great idea, because of the few games it does support.
But I don't think it's worth it. Many of the games it breaks via MoltenVK *don't work via Metal*. 
Which effectively makes current Ryubing worse for Mac users than Ryujinx 1.1.1403.

I think what I'm gonna do is revert Metal, and reopen it as a PR. That way, you can still take advantage of the Metal backend as is, but without making other games worse with no solution.
```

For what it's worth, the shader translation part could at least be
"fixed" by always applying a 30ms delay for shader translation to Metal.
That being said, that solution sucks ass.
The MoltenVK regressions are even worse.



I hope this is not a let down to the Mac users. I hope you realize I'm
reverting this because you're actively getting a worse experience with
it in the emulator.
This commit is contained in:
Evan Husted
2025-02-22 21:26:46 -06:00
committed by GitHub
parent eb6b0e9adc
commit fe1617ffea
135 changed files with 302 additions and 15077 deletions

View File

@@ -1,157 +0,0 @@
namespace Ryujinx.Graphics.Metal
{
readonly struct BitMap
{
public const int IntSize = 64;
private const int IntShift = 6;
private const int IntMask = IntSize - 1;
private readonly long[] _masks;
public BitMap(int count)
{
_masks = new long[(count + IntMask) / IntSize];
}
public bool AnySet()
{
for (int i = 0; i < _masks.Length; i++)
{
if (_masks[i] != 0)
{
return true;
}
}
return false;
}
public bool IsSet(int bit)
{
int wordIndex = bit >> IntShift;
int wordBit = bit & IntMask;
long wordMask = 1L << wordBit;
return (_masks[wordIndex] & wordMask) != 0;
}
public bool IsSet(int start, int end)
{
if (start == end)
{
return IsSet(start);
}
int startIndex = start >> IntShift;
int startBit = start & IntMask;
long startMask = -1L << startBit;
int endIndex = end >> IntShift;
int endBit = end & IntMask;
long endMask = (long)(ulong.MaxValue >> (IntMask - endBit));
if (startIndex == endIndex)
{
return (_masks[startIndex] & startMask & endMask) != 0;
}
if ((_masks[startIndex] & startMask) != 0)
{
return true;
}
for (int i = startIndex + 1; i < endIndex; i++)
{
if (_masks[i] != 0)
{
return true;
}
}
if ((_masks[endIndex] & endMask) != 0)
{
return true;
}
return false;
}
public bool Set(int bit)
{
int wordIndex = bit >> IntShift;
int wordBit = bit & IntMask;
long wordMask = 1L << wordBit;
if ((_masks[wordIndex] & wordMask) != 0)
{
return false;
}
_masks[wordIndex] |= wordMask;
return true;
}
public void SetRange(int start, int end)
{
if (start == end)
{
Set(start);
return;
}
int startIndex = start >> IntShift;
int startBit = start & IntMask;
long startMask = -1L << startBit;
int endIndex = end >> IntShift;
int endBit = end & IntMask;
long endMask = (long)(ulong.MaxValue >> (IntMask - endBit));
if (startIndex == endIndex)
{
_masks[startIndex] |= startMask & endMask;
}
else
{
_masks[startIndex] |= startMask;
for (int i = startIndex + 1; i < endIndex; i++)
{
_masks[i] |= -1;
}
_masks[endIndex] |= endMask;
}
}
public void Clear(int bit)
{
int wordIndex = bit >> IntShift;
int wordBit = bit & IntMask;
long wordMask = 1L << wordBit;
_masks[wordIndex] &= ~wordMask;
}
public void Clear()
{
for (int i = 0; i < _masks.Length; i++)
{
_masks[i] = 0;
}
}
public void ClearInt(int start, int end)
{
for (int i = start; i <= end; i++)
{
_masks[i] = 0;
}
}
}
}