Files
foobar2000-sdk/pfc/bit_array.cpp
2021-12-14 00:28:25 -07:00

183 lines
5.4 KiB
C++

#include "pfc.h"
namespace pfc {
void bit_array::for_each(bool value, size_t base, size_t max, std::function<void(size_t)> f) const {
for( size_t idx = find_first(value, base, max); idx < max; idx = find_next(value, idx, max) ) {
f(idx);
}
}
t_size bit_array::find(bool val, t_size start, t_ssize count) const
{
t_ssize d, todo, ptr = start;
if (count == 0) return start;
else if (count<0) { d = -1; todo = -count; }
else { d = 1; todo = count; }
while (todo>0 && get(ptr) != val) { ptr += d;todo--; }
return ptr;
}
t_size bit_array::calc_count(bool val, t_size start, t_size count, t_size count_max) const
{
t_size found = 0;
t_size max = start + count;
t_size ptr;
for (ptr = find(val, start, count);found<count_max && ptr<max;ptr = find(val, ptr + 1, max - ptr - 1)) found++;
return found;
}
t_size bit_array::find_first(bool val, t_size start, t_size max) const {
return find(val, start, max - start);
}
t_size bit_array::find_next(bool val, t_size previous, t_size max) const {
return find(val, previous + 1, max - (previous + 1));
}
void bit_array::walk(size_t to, std::function< void ( size_t ) > f, bool val ) const {
for ( size_t w = find_first(val, 0, to ); w < to; w = find_next(val, w, to) ) {
f(w);
}
}
void bit_array::walkBack(size_t from, std::function<void (size_t) > f, bool val) const {
t_ssize walk = from;
if ( walk == 0 ) return;
for( ;; ) {
walk = find(val, walk-1, - walk );
if ( walk < 0 ) return;
f ( walk );
}
}
bit_array_var_impl::bit_array_var_impl( const bit_array & source, size_t sourceCount) {
for(size_t w = source.find_first( true, 0, sourceCount); w < sourceCount; w = source.find_next( true, w, sourceCount ) ) {
set(w, true);
}
}
bool bit_array_var_impl::get(t_size n) const {
return m_data.have_item(n);
}
t_size bit_array_var_impl::find(bool val,t_size start,t_ssize count) const {
if (!val) {
return bit_array::find(false, start, count); //optimizeme.
} else if (count > 0) {
const t_size * v = m_data.find_nearest_item<true, true>(start);
if (v == NULL || *v > start+count) return start + count;
return *v;
} else if (count < 0) {
const t_size * v = m_data.find_nearest_item<true, false>(start);
if (v == NULL || *v < start+count) return start + count;
return *v;
} else return start;
}
void bit_array_var_impl::set(t_size n,bool val) {
if (val) m_data += n;
else m_data -= n;
}
bit_array_flatIndexList::bit_array_flatIndexList() {
m_content.prealloc( 1024 );
}
void bit_array_flatIndexList::add( size_t n ) {
m_content.append_single_val( n );
}
bool bit_array_flatIndexList::get(t_size n) const {
size_t dummy;
return _find( n, dummy );
}
t_size bit_array_flatIndexList::find(bool val,t_size start,t_ssize count) const {
if (val == false) {
// unoptimized but not really used
return bit_array::find(val, start, count);
}
if (count==0) return start;
else if (count<0) {
size_t idx;
if (!_findNearestDown( start, idx ) || (t_ssize)m_content[idx] < (t_ssize)start+count) return start + count;
return m_content[idx];
} else { // count > 0
size_t idx;
if (!_findNearestUp( start, idx ) || m_content[idx] > start+count) return start + count;
return m_content[idx];
}
}
bool bit_array_flatIndexList::_findNearestUp( size_t val, size_t & outIdx ) const {
size_t idx;
if (_find( val, idx )) { outIdx = idx; return true; }
// we have a valid outIdx at where the bsearch gave up
PFC_ASSERT ( idx == 0 || m_content [ idx - 1 ] < val );
PFC_ASSERT ( idx == m_content.get_size() || m_content[ idx ] > val );
if (idx == m_content.get_size()) return false;
outIdx = idx;
return true;
}
bool bit_array_flatIndexList::_findNearestDown( size_t val, size_t & outIdx ) const {
size_t idx;
if (_find( val, idx )) { outIdx = idx; return true; }
// we have a valid outIdx at where the bsearch gave up
PFC_ASSERT ( idx == 0 || m_content [ idx - 1 ] < val );
PFC_ASSERT ( idx == m_content.get_size() || m_content[ idx ] > val );
if (idx == 0) return false;
outIdx = idx - 1;
return true;
}
void bit_array_flatIndexList::presort() {
pfc::sort_t( m_content, pfc::compare_t< size_t, size_t >, m_content.get_size( ) );
}
bit_array_bittable::bit_array_bittable(const pfc::bit_array & in, size_t inSize) : m_count() {
resize(inSize);
for (size_t w = in.find_first(true, 0, inSize); w < inSize; w = in.find_next(true, w, inSize)) {
set(w, true);
}
}
void bit_array_bittable::resize(t_size p_count)
{
t_size old_bytes = g_estimate_size(m_count);
m_count = p_count;
t_size bytes = g_estimate_size(m_count);
m_data.set_size(bytes);
if (bytes > old_bytes) pfc::memset_null_t(m_data.get_ptr() + old_bytes, bytes - old_bytes);
}
void bit_array_bittable::set(t_size n, bool val)
{
if (n<m_count)
{
g_set(m_data, n, val);
}
}
bool bit_array_bittable::get(t_size n) const
{
bool rv = false;
if (n<m_count) {
rv = g_get(m_data, n);
}
return rv;
}
t_size bit_array_one::find(bool p_val, t_size start, t_ssize count) const
{
if (count == 0) return start;
else if (p_val)
{
if (count>0)
return (val >= start && (t_ssize)val < (t_ssize)start + count) ? val : start + count;
else
return (val <= start && (t_ssize)val > (t_ssize)start + count) ? val : start + count;
}
else
{
if (start == val) return count>0 ? start + 1 : start - 1;
else return start;
}
}
} // namespace pfc