Files
foobar2000-sdk/pfc/primitives.h
2021-12-14 00:28:25 -07:00

933 lines
31 KiB
C++

#pragma once
#include <functional>
#define tabsize(x) ((size_t)(sizeof(x)/sizeof(*x)))
#define PFC_TABSIZE(x) ((size_t)(sizeof(x)/sizeof(*x)))
#define TEMPLATE_CONSTRUCTOR_FORWARD_FLOOD_WITH_INITIALIZER(THISCLASS,MEMBER,INITIALIZER) \
THISCLASS() : MEMBER() INITIALIZER \
template<typename t_param1> THISCLASS(const t_param1 & p_param1) : MEMBER(p_param1) INITIALIZER \
template<typename t_param1,typename t_param2> THISCLASS(const t_param1 & p_param1,const t_param2 & p_param2) : MEMBER(p_param1,p_param2) INITIALIZER \
template<typename t_param1,typename t_param2,typename t_param3> THISCLASS(const t_param1 & p_param1,const t_param2 & p_param2,const t_param3 & p_param3) : MEMBER(p_param1,p_param2,p_param3) INITIALIZER \
template<typename t_param1,typename t_param2,typename t_param3,typename t_param4> THISCLASS(const t_param1 & p_param1,const t_param2 & p_param2,const t_param3 & p_param3,const t_param4 & p_param4) : MEMBER(p_param1,p_param2,p_param3,p_param4) INITIALIZER \
template<typename t_param1,typename t_param2,typename t_param3,typename t_param4,typename t_param5> THISCLASS(const t_param1 & p_param1,const t_param2 & p_param2,const t_param3 & p_param3,const t_param4 & p_param4,const t_param5 & p_param5) : MEMBER(p_param1,p_param2,p_param3,p_param4,p_param5) INITIALIZER \
template<typename t_param1,typename t_param2,typename t_param3,typename t_param4,typename t_param5,typename t_param6> THISCLASS(const t_param1 & p_param1,const t_param2 & p_param2,const t_param3 & p_param3,const t_param4 & p_param4,const t_param5 & p_param5,const t_param6 & p_param6) : MEMBER(p_param1,p_param2,p_param3,p_param4,p_param5,p_param6) INITIALIZER \
template<typename t_param1,typename t_param2,typename t_param3,typename t_param4,typename t_param5,typename t_param6, typename t_param7> THISCLASS(const t_param1 & p_param1,const t_param2 & p_param2,const t_param3 & p_param3,const t_param4 & p_param4,const t_param5 & p_param5,const t_param6 & p_param6,const t_param7 & p_param7) : MEMBER(p_param1,p_param2,p_param3,p_param4,p_param5,p_param6,p_param7) INITIALIZER \
template<typename t_param1,typename t_param2,typename t_param3,typename t_param4,typename t_param5,typename t_param6, typename t_param7, typename t_param8> THISCLASS(const t_param1 & p_param1,const t_param2 & p_param2,const t_param3 & p_param3,const t_param4 & p_param4,const t_param5 & p_param5,const t_param6 & p_param6,const t_param7 & p_param7, const t_param8 & p_param8) : MEMBER(p_param1,p_param2,p_param3,p_param4,p_param5,p_param6,p_param7, p_param8) INITIALIZER
#define TEMPLATE_CONSTRUCTOR_FORWARD_FLOOD(THISCLASS,MEMBER) TEMPLATE_CONSTRUCTOR_FORWARD_FLOOD_WITH_INITIALIZER(THISCLASS,MEMBER,{})
#ifdef _WIN32
#ifndef _MSC_VER
#error MSVC expected
#endif
// MSVC specific - part of fb2k ABI - cannot ever change on MSVC/Windows
#define PFC_DECLARE_EXCEPTION(NAME,BASECLASS,DEFAULTMSG) \
class NAME : public BASECLASS { \
public: \
static const char * g_what() {return DEFAULTMSG;} \
NAME() : BASECLASS(DEFAULTMSG,0) {} \
NAME(const char * p_msg) : BASECLASS(p_msg) {} \
NAME(const char * p_msg,int) : BASECLASS(p_msg,0) {} \
NAME(const NAME & p_source) : BASECLASS(p_source) {} \
};
namespace pfc {
template<typename t_exception> PFC_NORETURN inline void throw_exception_with_message(const char * p_message) {
throw t_exception(p_message);
}
}
#else
#define PFC_DECLARE_EXCEPTION(NAME,BASECLASS,DEFAULTMSG) \
class NAME : public BASECLASS { \
public: \
static const char * g_what() {return DEFAULTMSG;} \
const char* what() const throw() {return DEFAULTMSG;} \
};
namespace pfc {
template<typename t_base> class __exception_with_message_t : public t_base {
private: typedef __exception_with_message_t<t_base> t_self;
public:
__exception_with_message_t(const char * p_message) : m_message(NULL) {
set_message(p_message);
}
__exception_with_message_t() : m_message(NULL) {}
__exception_with_message_t(const t_self & p_source) : m_message(NULL) {set_message(p_source.m_message);}
const char* what() const throw() {return m_message != NULL ? m_message : "unnamed exception";}
const t_self & operator=(const t_self & p_source) {set_message(p_source.m_message);}
~__exception_with_message_t() throw() {cleanup();}
private:
void set_message(const char * p_message) throw() {
cleanup();
if (p_message != NULL) m_message = strdup(p_message);
}
void cleanup() throw() {
if (m_message != NULL) {free(m_message); m_message = NULL;}
}
char * m_message;
};
template<typename t_exception> PFC_NORETURN void throw_exception_with_message(const char * p_message) {
throw __exception_with_message_t<t_exception>(p_message);
}
}
#endif
namespace pfc {
template<typename p_type1,typename p_type2> class assert_same_type;
template<typename p_type> class assert_same_type<p_type,p_type> {};
template<typename p_type1,typename p_type2>
class is_same_type { public: enum {value = false}; };
template<typename p_type>
class is_same_type<p_type,p_type> { public: enum {value = true}; };
template<bool val> class static_assert_t;
template<> class static_assert_t<true> {};
#define PFC_STATIC_ASSERT(X) { ::pfc::static_assert_t<(X)>(); }
template<typename t_type>
void assert_raw_type() {static_assert_t< !traits_t<t_type>::needs_constructor && !traits_t<t_type>::needs_destructor >();}
template<typename t_type> class assert_byte_type;
template<> class assert_byte_type<char> {};
template<> class assert_byte_type<unsigned char> {};
template<> class assert_byte_type<signed char> {};
template<typename t_type> void __unsafe__memcpy_t(t_type * p_dst,const t_type * p_src,t_size p_count) {
::memcpy(reinterpret_cast<void*>(p_dst), reinterpret_cast<const void*>(p_src), p_count * sizeof(t_type));
}
template<typename t_type> void __unsafe__in_place_destructor_t(t_type & p_item) throw() {
if (traits_t<t_type>::needs_destructor) try{ p_item.~t_type(); } catch(...) {}
}
template<typename t_type> void __unsafe__in_place_constructor_t(t_type & p_item) {
if (traits_t<t_type>::needs_constructor) {
t_type * ret = new(&p_item) t_type;
PFC_ASSERT(ret == &p_item);
(void) ret; // suppress warning
}
}
template<typename t_type> void __unsafe__in_place_destructor_array_t(t_type * p_items, t_size p_count) throw() {
if (traits_t<t_type>::needs_destructor) {
t_type * walk = p_items;
for(t_size n=p_count;n;--n) __unsafe__in_place_destructor_t(*(walk++));
}
}
template<typename t_type> t_type * __unsafe__in_place_constructor_array_t(t_type * p_items,t_size p_count) {
if (traits_t<t_type>::needs_constructor) {
t_size walkptr = 0;
try {
for(walkptr=0;walkptr<p_count;++walkptr) __unsafe__in_place_constructor_t(p_items[walkptr]);
} catch(...) {
__unsafe__in_place_destructor_array_t(p_items,walkptr);
throw;
}
}
return p_items;
}
template<typename t_type> t_type * __unsafe__in_place_resize_array_t(t_type * p_items,t_size p_from,t_size p_to) {
if (p_from < p_to) __unsafe__in_place_constructor_array_t(p_items + p_from, p_to - p_from);
else if (p_from > p_to) __unsafe__in_place_destructor_array_t(p_items + p_to, p_from - p_to);
return p_items;
}
template<typename t_type,typename t_copy> void __unsafe__in_place_constructor_copy_t(t_type & p_item,const t_copy & p_copyfrom) {
if (traits_t<t_type>::needs_constructor) {
t_type * ret = new(&p_item) t_type(p_copyfrom);
PFC_ASSERT(ret == &p_item);
(void) ret; // suppress warning
} else {
p_item = p_copyfrom;
}
}
template<typename t_type,typename t_copy> t_type * __unsafe__in_place_constructor_array_copy_t(t_type * p_items,t_size p_count, const t_copy * p_copyfrom) {
t_size walkptr = 0;
try {
for(walkptr=0;walkptr<p_count;++walkptr) __unsafe__in_place_constructor_copy_t(p_items[walkptr],p_copyfrom[walkptr]);
} catch(...) {
__unsafe__in_place_destructor_array_t(p_items,walkptr);
throw;
}
return p_items;
}
template<typename t_type,typename t_copy> t_type * __unsafe__in_place_constructor_array_copy_partial_t(t_type * p_items,t_size p_count, const t_copy * p_copyfrom,t_size p_copyfrom_count) {
if (p_copyfrom_count > p_count) p_copyfrom_count = p_count;
__unsafe__in_place_constructor_array_copy_t(p_items,p_copyfrom_count,p_copyfrom);
try {
__unsafe__in_place_constructor_array_t(p_items + p_copyfrom_count,p_count - p_copyfrom_count);
} catch(...) {
__unsafe__in_place_destructor_array_t(p_items,p_copyfrom_count);
throw;
}
return p_items;
}
template<typename t_ret> t_ret implicit_cast(t_ret val) {return val;}
template<typename t_ret,typename t_param>
t_ret * safe_ptr_cast(t_param * p_param) {
if (pfc::is_same_type<t_ret,t_param>::value) return p_param;
else {
if (p_param == NULL) return NULL;
else return p_param;
}
}
typedef std::exception exception;
PFC_DECLARE_EXCEPTION(exception_overflow,exception,"Overflow");
PFC_DECLARE_EXCEPTION(exception_bug_check,exception,"Bug check");
PFC_DECLARE_EXCEPTION(exception_invalid_params,exception_bug_check,"Invalid parameters");
PFC_DECLARE_EXCEPTION(exception_unexpected_recursion,exception_bug_check,"Unexpected recursion");
PFC_DECLARE_EXCEPTION(exception_not_implemented,exception_bug_check,"Feature not implemented");
PFC_DECLARE_EXCEPTION(exception_dynamic_assert,exception_bug_check,"dynamic_assert failure");
template<typename t_ret,typename t_param>
t_ret downcast_guarded(const t_param & p_param) {
t_ret temp = (t_ret) p_param;
if ((t_param) temp != p_param) throw exception_overflow();
return temp;
}
template<typename t_exception,typename t_ret,typename t_param>
t_ret downcast_guarded_ex(const t_param & p_param) {
t_ret temp = (t_ret) p_param;
if ((t_param) temp != p_param) throw t_exception();
return temp;
}
template<typename t_acc,typename t_add>
void accumulate_guarded(t_acc & p_acc, const t_add & p_add) {
t_acc delta = downcast_guarded<t_acc>(p_add);
delta += p_acc;
if (delta < p_acc) throw exception_overflow();
p_acc = delta;
}
//deprecated
inline void bug_check_assert(bool p_condition, const char * p_msg) {
if (!p_condition) {
PFC_ASSERT(0);
throw_exception_with_message<exception_bug_check>(p_msg);
}
}
//deprecated
inline void bug_check_assert(bool p_condition) {
if (!p_condition) {
PFC_ASSERT(0);
throw exception_bug_check();
}
}
inline void dynamic_assert(bool p_condition, const char * p_msg) {
if (!p_condition) {
PFC_ASSERT(0);
throw_exception_with_message<exception_dynamic_assert>(p_msg);
}
}
inline void dynamic_assert(bool p_condition) {
if (!p_condition) {
PFC_ASSERT(0);
throw exception_dynamic_assert();
}
}
template<typename T>
inline void swap_multi_t(T * p_buffer1,T * p_buffer2,t_size p_size) {
T * walk1 = p_buffer1, * walk2 = p_buffer2;
for(t_size n=p_size;n;--n) {
T temp (* walk1);
*walk1 = *walk2;
*walk2 = temp;
walk1++; walk2++;
}
}
template<typename T,t_size p_size>
inline void swap_multi_t(T * p_buffer1,T * p_buffer2) {
T * walk1 = p_buffer1, * walk2 = p_buffer2;
for(t_size n=p_size;n;--n) {
T temp (* walk1);
*walk1 = *walk2;
*walk2 = temp;
walk1++; walk2++;
}
}
template<t_size p_size>
inline void __unsafe__swap_raw_t(void * p_object1, void * p_object2) {
if (p_size % sizeof(t_size) == 0) {
swap_multi_t<t_size,p_size/sizeof(t_size)>(reinterpret_cast<t_size*>(p_object1),reinterpret_cast<t_size*>(p_object2));
} else {
swap_multi_t<t_uint8,p_size>(reinterpret_cast<t_uint8*>(p_object1),reinterpret_cast<t_uint8*>(p_object2));
}
}
template<typename T>
inline void swap_t(T & p_item1, T & p_item2) {
if (traits_t<T>::realloc_safe) {
__unsafe__swap_raw_t<sizeof(T)>( reinterpret_cast<void*>( &p_item1 ), reinterpret_cast<void*>( &p_item2 ) );
} else {
T temp( std::move(p_item2) );
p_item2 = std::move(p_item1);
p_item1 = std::move(temp);
}
}
//! This is similar to plain p_item1 = p_item2; assignment, but optimized for the case where p_item2 content is no longer needed later on. This can be overridden for specific classes for optimal performance. \n
//! p_item2 value is undefined after performing a move_t. For an example, in certain cases move_t will fall back to swap_t.
template<typename T>
inline void move_t(T & p_item1, T & p_item2) {
typedef traits_t<T> t;
if (t::needs_constructor || t::needs_destructor) {
if (t::realloc_safe) swap_t(p_item1, p_item2);
else p_item1 = std::move( p_item2 );
} else {
p_item1 = std::move( p_item2 );
}
}
template<typename t_array>
t_size array_size_t(const t_array & p_array) {return p_array.get_size();}
template<typename t_item, t_size p_width>
t_size array_size_t(const t_item (&p_array)[p_width]) {return p_width;}
template<typename t_array, typename t_item> static bool array_isLast(const t_array & arr, const t_item & item) {
const t_size size = pfc::array_size_t(arr);
return size > 0 && arr[size-1] == item;
}
template<typename t_array, typename t_item> static bool array_isFirst(const t_array & arr, const t_item & item) {
const t_size size = pfc::array_size_t(arr);
return size > 0 && arr[0] == item;
}
template<typename t_array,typename t_filler>
inline void fill_t(t_array & p_buffer,const t_size p_count, const t_filler & p_filler) {
for(t_size n=0;n<p_count;n++)
p_buffer[n] = p_filler;
}
template<typename t_array,typename t_filler>
inline void fill_ptr_t(t_array * p_buffer,const t_size p_count, const t_filler & p_filler) {
for(t_size n=0;n<p_count;n++)
p_buffer[n] = p_filler;
}
template<typename t_item1, typename t_item2>
inline int compare_t(const t_item1 & p_item1, const t_item2 & p_item2) {
if (p_item1 < p_item2) return -1;
else if (p_item1 > p_item2) return 1;
else return 0;
}
//! For use with avltree/map etc.
class comparator_default {
public:
template<typename t_item1,typename t_item2>
inline static int compare(const t_item1 & p_item1,const t_item2 & p_item2) {return pfc::compare_t(p_item1,p_item2);}
};
template<typename t_comparator = pfc::comparator_default> class comparator_pointer { public:
template<typename t_item1,typename t_item2> static int compare(const t_item1 & p_item1,const t_item2 & p_item2) {return t_comparator::compare(*p_item1,*p_item2);}
};
template<typename t_primary,typename t_secondary> class comparator_dual { public:
template<typename t_item1,typename t_item2> static int compare(const t_item1 & p_item1,const t_item2 & p_item2) {
int state = t_primary::compare(p_item1,p_item2);
if (state != 0) return state;
return t_secondary::compare(p_item1,p_item2);
}
};
class comparator_memcmp {
public:
template<typename t_item1,typename t_item2>
inline static int compare(const t_item1 & p_item1,const t_item2 & p_item2) {
static_assert_t<sizeof(t_item1) == sizeof(t_item2)>();
return memcmp(&p_item1,&p_item2,sizeof(t_item1));
}
};
template<typename t_source1, typename t_source2>
t_size subtract_sorted_lists_calculate_count(const t_source1 & p_source1, const t_source2 & p_source2) {
t_size walk1 = 0, walk2 = 0, walk_out = 0;
const t_size max1 = p_source1.get_size(), max2 = p_source2.get_size();
for(;;) {
int state;
if (walk1 < max1 && walk2 < max2) {
state = pfc::compare_t(p_source1[walk1],p_source2[walk2]);
} else if (walk1 < max1) {
state = -1;
} else if (walk2 < max2) {
state = 1;
} else {
break;
}
if (state < 0) walk_out++;
if (state <= 0) walk1++;
if (state >= 0) walk2++;
}
return walk_out;
}
//! Subtracts p_source2 contents from p_source1 and stores result in p_destination. Both source lists must be sorted.
//! Note: duplicates will be carried over (and ignored for p_source2).
template<typename t_destination, typename t_source1, typename t_source2>
void subtract_sorted_lists(t_destination & p_destination,const t_source1 & p_source1, const t_source2 & p_source2) {
p_destination.set_size(subtract_sorted_lists_calculate_count(p_source1,p_source2));
t_size walk1 = 0, walk2 = 0, walk_out = 0;
const t_size max1 = p_source1.get_size(), max2 = p_source2.get_size();
for(;;) {
int state;
if (walk1 < max1 && walk2 < max2) {
state = pfc::compare_t(p_source1[walk1],p_source2[walk2]);
} else if (walk1 < max1) {
state = -1;
} else if (walk2 < max2) {
state = 1;
} else {
break;
}
if (state < 0) p_destination[walk_out++] = p_source1[walk1];
if (state <= 0) walk1++;
if (state >= 0) walk2++;
}
}
template<typename t_source1, typename t_source2>
t_size merge_sorted_lists_calculate_count(const t_source1 & p_source1, const t_source2 & p_source2) {
t_size walk1 = 0, walk2 = 0, walk_out = 0;
const t_size max1 = p_source1.get_size(), max2 = p_source2.get_size();
for(;;) {
int state;
if (walk1 < max1 && walk2 < max2) {
state = pfc::compare_t(p_source1[walk1],p_source2[walk2]);
} else if (walk1 < max1) {
state = -1;
} else if (walk2 < max2) {
state = 1;
} else {
break;
}
if (state <= 0) walk1++;
if (state >= 0) walk2++;
walk_out++;
}
return walk_out;
}
//! Merges p_source1 and p_source2, storing content in p_destination. Both source lists must be sorted.
//! Note: duplicates will be carried over.
template<typename t_destination, typename t_source1, typename t_source2>
void merge_sorted_lists(t_destination & p_destination,const t_source1 & p_source1, const t_source2 & p_source2) {
p_destination.set_size(merge_sorted_lists_calculate_count(p_source1,p_source2));
t_size walk1 = 0, walk2 = 0, walk_out = 0;
const t_size max1 = p_source1.get_size(), max2 = p_source2.get_size();
for(;;) {
int state;
if (walk1 < max1 && walk2 < max2) {
state = pfc::compare_t(p_source1[walk1],p_source2[walk2]);
} else if (walk1 < max1) {
state = -1;
} else if (walk2 < max2) {
state = 1;
} else {
break;
}
if (state < 0) {
p_destination[walk_out] = p_source1[walk1++];
} else if (state > 0) {
p_destination[walk_out] = p_source2[walk2++];
} else {
p_destination[walk_out] = p_source1[walk1];
walk1++; walk2++;
}
walk_out++;
}
}
template<typename t_array,typename T>
inline t_size append_t(t_array & p_array,const T & p_item)
{
t_size old_count = p_array.get_size();
p_array.set_size(old_count + 1);
p_array[old_count] = p_item;
return old_count;
}
template<typename t_array,typename T>
inline t_size append_swap_t(t_array & p_array,T & p_item)
{
t_size old_count = p_array.get_size();
p_array.set_size(old_count + 1);
swap_t(p_array[old_count],p_item);
return old_count;
}
template<typename t_array>
inline t_size insert_uninitialized_t(t_array & p_array,t_size p_index) {
t_size old_count = p_array.get_size();
if (p_index > old_count) p_index = old_count;
p_array.set_size(old_count + 1);
for(t_size n=old_count;n>p_index;n--) move_t(p_array[n], p_array[n-1]);
return p_index;
}
template<typename t_array,typename T>
inline t_size insert_t(t_array & p_array,const T & p_item,t_size p_index) {
t_size old_count = p_array.get_size();
if (p_index > old_count) p_index = old_count;
p_array.set_size(old_count + 1);
for(t_size n=old_count;n>p_index;n--)
move_t(p_array[n], p_array[n-1]);
p_array[p_index] = p_item;
return p_index;
}
template<typename array1_t, typename array2_t>
void insert_array_t( array1_t & outArray, size_t insertAt, array2_t const & inArray, size_t inArraySize) {
const size_t oldSize = outArray.get_size();
if (insertAt > oldSize) insertAt = oldSize;
const size_t newSize = oldSize + inArraySize;
outArray.set_size( newSize );
for(size_t m = oldSize; m != insertAt; --m) {
move_t( outArray[ m - 1 + inArraySize], outArray[m - 1] );
}
for(size_t w = 0; w < inArraySize; ++w) {
outArray[ insertAt + w ] = inArray[ w ];
}
}
template<typename t_array,typename in_array_t>
inline t_size insert_multi_t(t_array & p_array,const in_array_t & p_items, size_t p_itemCount, t_size p_index) {
const t_size old_count = p_array.get_size();
const size_t new_count = old_count + p_itemCount;
if (p_index > old_count) p_index = old_count;
p_array.set_size(new_count);
size_t toMove = old_count - p_index;
for(size_t w = 0; w < toMove; ++w) {
move_t( p_array[new_count - 1 - w], p_array[old_count - 1 - w] );
}
for(size_t w = 0; w < p_itemCount; ++w) {
p_array[p_index+w] = p_items[w];
}
return p_index;
}
template<typename t_array,typename T>
inline t_size insert_swap_t(t_array & p_array,T & p_item,t_size p_index) {
t_size old_count = p_array.get_size();
if (p_index > old_count) p_index = old_count;
p_array.set_size(old_count + 1);
for(t_size n=old_count;n>p_index;n--)
swap_t(p_array[n],p_array[n-1]);
swap_t(p_array[p_index],p_item);
return p_index;
}
template<typename T>
inline T max_t(const T & item1, const T & item2) {return item1 > item2 ? item1 : item2;};
template<typename T>
inline T min_t(const T & item1, const T & item2) {return item1 < item2 ? item1 : item2;};
template<typename T>
inline T abs_t(T item) {return item<0 ? -item : item;}
template<typename T>
inline T sqr_t(T item) {return item * item;}
template<typename T>
inline T clip_t(const T & p_item, const T & p_min, const T & p_max) {
if (p_item < p_min) return p_min;
else if (p_item <= p_max) return p_item;
else return p_max;
}
template<typename T>
inline void delete_t(T* ptr) {delete ptr;}
template<typename T>
inline void delete_array_t(T* ptr) {delete[] ptr;}
template<typename T>
inline T* clone_t(T* ptr) {return new T(*ptr);}
template<typename t_exception,typename t_int>
inline t_int mul_safe_t(t_int p_val1,t_int p_val2) {
if (p_val1 == 0 || p_val2 == 0) return 0;
t_int temp = (t_int) (p_val1 * p_val2);
if (temp / p_val1 != p_val2) throw t_exception();
return temp;
}
template<typename t_int>
t_int multiply_guarded(t_int v1, t_int v2) {
return mul_safe_t<exception_overflow>(v1, v2);
}
template<typename t_int> t_int add_unsigned_clipped(t_int v1, t_int v2) {
t_int v = v1 + v2;
if (v < v1) return ~0;
return v;
}
template<typename t_int> t_int sub_unsigned_clipped(t_int v1, t_int v2) {
t_int v = v1 - v2;
if (v > v1) return 0;
return v;
}
template<typename t_int> void acc_unsigned_clipped(t_int & v1, t_int v2) {
v1 = add_unsigned_clipped(v1, v2);
}
template<typename t_src,typename t_dst>
void memcpy_t(t_dst* p_dst,const t_src* p_src,t_size p_count) {
for(t_size n=0;n<p_count;n++) p_dst[n] = p_src[n];
}
template<typename t_dst,typename t_src>
void copy_array_loop_t(t_dst & p_dst,const t_src & p_src,t_size p_count) {
for(t_size n=0;n<p_count;n++) p_dst[n] = p_src[n];
}
template<typename t_src,typename t_dst>
void memcpy_backwards_t(t_dst * p_dst,const t_src * p_src,t_size p_count) {
p_dst += p_count; p_src += p_count;
for(t_size n=0;n<p_count;n++) *(--p_dst) = *(--p_src);
}
template<typename T,typename t_val>
void memset_t(T * p_buffer,const t_val & p_val,t_size p_count) {
for(t_size n=0;n<p_count;n++) p_buffer[n] = p_val;
}
template<typename T,typename t_val>
void memset_t(T &p_buffer,const t_val & p_val) {
const t_size width = pfc::array_size_t(p_buffer);
for(t_size n=0;n<width;n++) p_buffer[n] = p_val;
}
template<typename T>
void memset_null_t(T * p_buffer,t_size p_count) {
for(t_size n=0;n<p_count;n++) p_buffer[n] = 0;
}
template<typename T>
void memset_null_t(T &p_buffer) {
const t_size width = pfc::array_size_t(p_buffer);
for(t_size n=0;n<width;n++) p_buffer[n] = 0;
}
template<typename T>
void memmove_t(T* p_dst,const T* p_src,t_size p_count) {
if (p_dst == p_src) {/*do nothing*/}
else if (p_dst > p_src && p_dst < p_src + p_count) memcpy_backwards_t<T>(p_dst,p_src,p_count);
else memcpy_t<T>(p_dst,p_src,p_count);
}
template<typename TVal> void memxor_t(TVal * out, const TVal * s1, const TVal * s2, t_size count) {
for(t_size walk = 0; walk < count; ++walk) out[walk] = s1[walk] ^ s2[walk];
}
static void memxor(void * target, const void * source1, const void * source2, t_size size) {
memxor_t( reinterpret_cast<t_uint8*>(target), reinterpret_cast<const t_uint8*>(source1), reinterpret_cast<const t_uint8*>(source2), size);
}
template<typename T>
T* new_ptr_check_t(T* p_ptr) {
if (p_ptr == NULL) throw std::bad_alloc();
return p_ptr;
}
template<typename T>
int sgn_t(const T & p_val) {
if (p_val < 0) return -1;
else if (p_val > 0) return 1;
else return 0;
}
template<typename T> const T* empty_string_t();
template<> inline const char * empty_string_t<char>() {return "";}
template<> inline const wchar_t * empty_string_t<wchar_t>() {return L"";}
template<typename t_type,typename t_newval>
t_type replace_t(t_type & p_var,const t_newval & p_newval) {
t_type oldval = p_var;
p_var = p_newval;
return oldval;
}
template<typename t_type>
t_type replace_null_t(t_type & p_var) {
t_type ret = p_var;
p_var = 0;
return ret;
}
template<t_size p_size_pow2>
inline bool is_ptr_aligned_t(const void * p_ptr) {
static_assert_t< (p_size_pow2 & (p_size_pow2 - 1)) == 0 >();
return ( ((t_size)p_ptr) & (p_size_pow2-1) ) == 0;
}
template<typename t_array>
void array_rangecheck_t(const t_array & p_array,t_size p_index) {
if (p_index >= pfc::array_size_t(p_array)) throw pfc::exception_overflow();
}
template<typename t_array>
void array_rangecheck_t(const t_array & p_array,t_size p_from,t_size p_to) {
if (p_from > p_to) throw pfc::exception_overflow();
array_rangecheck_t(p_array,p_from); array_rangecheck_t(p_array,p_to);
}
t_int32 rint32(double p_val);
t_int64 rint64(double p_val);
template<typename array_t, typename pred_t>
inline size_t remove_if_t( array_t & arr, pred_t pred ) {
const size_t inCount = arr.size();
size_t walk = 0;
for( walk = 0; walk < inCount; ++ walk ) {
if ( pred(arr[walk]) ) break;
}
size_t total = walk;
for( ; walk < inCount; ++ walk ) {
if ( !pred(arr[walk] ) ) {
move_t(arr[total++], arr[walk]);
}
}
arr.resize(total);
return total;
}
template<typename t_array>
inline t_size remove_mask_t(t_array & p_array,const bit_array & p_mask)//returns amount of items left
{
t_size n,count = p_array.size(), total = 0;
n = total = p_mask.find(true,0,count);
if (n<count)
{
for(n=p_mask.find(false,n+1,count-n-1);n<count;n=p_mask.find(false,n+1,count-n-1))
move_t(p_array[total++],p_array[n]);
p_array.resize(total);
return total;
}
else return count;
}
template<typename t_array,typename t_compare>
t_size find_duplicates_sorted_t(t_array p_array,t_size p_count,t_compare p_compare,bit_array_var & p_out) {
t_size ret = 0;
t_size n;
if (p_count > 0)
{
p_out.set(0,false);
for(n=1;n<p_count;n++)
{
bool found = p_compare(p_array[n-1],p_array[n]) == 0;
if (found) ret++;
p_out.set(n,found);
}
}
return ret;
}
template<typename t_array,typename t_compare,typename t_permutation>
t_size find_duplicates_sorted_permutation_t(t_array p_array,t_size p_count,t_compare p_compare,t_permutation const & p_permutation,bit_array_var & p_out) {
t_size ret = 0;
t_size n;
if (p_count > 0) {
p_out.set(p_permutation[0],false);
for(n=1;n<p_count;n++)
{
bool found = p_compare(p_array[p_permutation[n-1]],p_array[p_permutation[n]]) == 0;
if (found) ret++;
p_out.set(p_permutation[n],found);
}
}
return ret;
}
template<typename t_char>
t_size strlen_t(const t_char * p_string,t_size p_length = ~0) {
for(t_size walk = 0;;walk++) {
if (walk >= p_length || p_string[walk] == 0) return walk;
}
}
template<typename t_array>
class __list_to_array_enumerator {
public:
__list_to_array_enumerator(t_array & p_array) : m_walk(), m_array(p_array) {}
template<typename t_item>
void operator() (const t_item & p_item) {
PFC_ASSERT(m_walk < m_array.get_size());
m_array[m_walk++] = p_item;
}
void finalize() {
PFC_ASSERT(m_walk == m_array.get_size());
}
private:
t_size m_walk;
t_array & m_array;
};
template<typename t_list,typename t_array>
void list_to_array(t_array & p_array,const t_list & p_list) {
p_array.set_size(p_list.get_count());
__list_to_array_enumerator<t_array> enumerator(p_array);
p_list.enumerate(enumerator);
enumerator.finalize();
}
template<typename t_receiver>
class enumerator_add_item {
public:
enumerator_add_item(t_receiver & p_receiver) : m_receiver(p_receiver) {}
template<typename t_item> void operator() (const t_item & p_item) {m_receiver.add_item(p_item);}
private:
t_receiver & m_receiver;
};
template<typename t_receiver,typename t_giver>
void overwrite_list_enumerated(t_receiver & p_receiver,const t_giver & p_giver) {
enumerator_add_item<t_receiver> wrapper(p_receiver);
p_giver.enumerate(wrapper);
}
template<typename t_receiver,typename t_giver>
void copy_list_enumerated(t_receiver & p_receiver,const t_giver & p_giver) {
p_receiver.remove_all();
overwrite_list_enumerated(p_receiver,p_giver);
}
inline bool lxor(bool p_val1,bool p_val2) {
return p_val1 == !p_val2;
}
template<typename t_val>
inline void min_acc(t_val & p_acc,const t_val & p_val) {
if (p_val < p_acc) p_acc = p_val;
}
template<typename t_val>
inline void max_acc(t_val & p_acc,const t_val & p_val) {
if (p_val > p_acc) p_acc = p_val;
}
t_uint64 pow_int(t_uint64 base, t_uint64 exp);
template<typename t_val>
class incrementScope {
public:
incrementScope(t_val & i) : v(i) {++v;}
~incrementScope() {--v;}
private:
t_val & v;
};
inline unsigned countBits32(uint32_t i) {
const uint32_t mask = 0x11111111;
uint32_t acc = i & mask;
acc += (i >> 1) & mask;
acc += (i >> 2) & mask;
acc += (i >> 3) & mask;
const uint32_t mask2 = 0x0F0F0F0F;
uint32_t acc2 = acc & mask2;
acc2 += (acc >> 4) & mask2;
const uint32_t mask3 = 0x00FF00FF;
uint32_t acc3 = acc2 & mask3;
acc3 += (acc2 >> 8) & mask3;
return (acc3 & 0xFFFF) + ((acc3 >> 16) & 0xFFFF);
}
// Forward declarations
template<typename t_to,typename t_from>
void copy_array_t(t_to & p_to,const t_from & p_from);
template<typename t_array,typename t_value>
void fill_array_t(t_array & p_array,const t_value & p_value);
// Generic no-op for breakpointing stuff
inline void nop() {}
class onLeaving {
public:
onLeaving() {}
onLeaving( std::function<void () > f_ ) : f(f_) {}
~onLeaving() {
if (f) f();
}
std::function<void () > f;
private:
void operator=( onLeaving const & ) = delete;
onLeaving( const onLeaving & ) = delete;
};
template<typename obj_t>
class singleton {
public:
static obj_t instance;
};
template<typename obj_t>
obj_t singleton<obj_t>::instance;
};
#define PFC_SINGLETON(X) ::pfc::singleton<X>::instance
#define PFC_CLASS_NOT_COPYABLE(THISCLASSNAME,THISTYPE) \
private: \
THISCLASSNAME(const THISTYPE&) = delete; \
const THISTYPE & operator=(const THISTYPE &) = delete;
#define PFC_CLASS_NOT_COPYABLE_EX(THISTYPE) PFC_CLASS_NOT_COPYABLE(THISTYPE,THISTYPE)