zlib 1.2.2.1

This commit is contained in:
Mark Adler
2011-09-09 23:24:24 -07:00
parent 79fbcdc939
commit 9811b53dd9
36 changed files with 1334 additions and 429 deletions

95
crc32.c
View File

@@ -1,12 +1,12 @@
/* crc32.c -- compute the CRC-32 of a data stream
* Copyright (C) 1995-2003 Mark Adler
* Copyright (C) 1995-2004 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*
* Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
* tables for updating the shift register in one step with three exclusive-ors
* instead of four steps with four exclusive-ors. This results about a factor
* of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
* instead of four steps with four exclusive-ors. This results in about a
* factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
*/
/* @(#) $Id$ */
@@ -72,6 +72,9 @@ local void make_crc_table OF((void));
#ifdef MAKECRCH
local void write_table OF((FILE *, const unsigned long FAR *));
#endif /* MAKECRCH */
local unsigned long gf2_matrix_times OF((unsigned long *mat,
unsigned long vec));
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
/*
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
@@ -331,3 +334,89 @@ local unsigned long crc32_big(crc, buf, len)
}
#endif /* BYFOUR */
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
/* ========================================================================= */
local unsigned long gf2_matrix_times(mat, vec)
unsigned long *mat;
unsigned long vec;
{
unsigned long sum;
sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
vec >>= 1;
mat++;
}
return sum;
}
/* ========================================================================= */
local void gf2_matrix_square(square, mat)
unsigned long *square;
unsigned long *mat;
{
int n;
for (n = 0; n < GF2_DIM; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
/* ========================================================================= */
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
uLong crc1;
uLong crc2;
uLong len2;
{
int n;
unsigned long row;
unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
/* degenerate case */
if (len2 == 0)
return crc1;
/* put operator for one zero bit in odd */
odd[0] = 0xedb88320L; /* CRC-32 polynomial */
row = 1;
for (n = 1; n < GF2_DIM; n++) {
odd[n] = row;
row <<= 1;
}
/* put operator for two zero bits in even */
gf2_matrix_square(even, odd);
/* put operator for four zero bits in odd */
gf2_matrix_square(odd, even);
/* apply len2 zeros to crc1 (first square will put the operator for one
zero byte, eight zero bits, in even) */
do {
/* apply zeros operator for this bit of len2 */
gf2_matrix_square(even, odd);
if (len2 & 1)
crc1 = gf2_matrix_times(even, crc1);
len2 >>= 1;
/* if no more bits set, then done */
if (len2 == 0)
break;
/* another iteration of the loop with odd and even swapped */
gf2_matrix_square(odd, even);
if (len2 & 1)
crc1 = gf2_matrix_times(odd, crc1);
len2 >>= 1;
/* if no more bits set, then done */
} while (len2 != 0);
/* return combined crc */
crc1 ^= crc2;
return crc1;
}