Files
nina-fw/main/sketch.ino.cpp

202 lines
5.1 KiB
C++

/*
This file is part of the Arduino NINA firmware.
Copyright (c) 2018 Arduino SA. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <rom/uart.h>
extern "C" {
#include <driver/periph_ctrl.h>
#include <driver/uart.h>
#include <esp_bt.h>
}
#include <Arduino.h>
#include <SPIS.h>
#include <WiFi.h>
#include "CommandHandler.h"
#define SPI_BUFFER_LEN SPI_MAX_DMA_LEN
int debug = 0;
uint8_t* commandBuffer;
uint8_t* responseBuffer;
void dumpBuffer(const char* label, uint8_t data[], int length) {
ets_printf("%s: ", label);
for (int i = 0; i < length; i++) {
ets_printf("%02x", data[i]);
}
ets_printf("\r\n");
}
void setDebug(int d) {
debug = d;
if (debug) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[1], 0);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[3], 0);
const char* default_uart_dev = "/dev/uart/0";
_GLOBAL_REENT->_stdin = fopen(default_uart_dev, "r");
_GLOBAL_REENT->_stdout = fopen(default_uart_dev, "w");
_GLOBAL_REENT->_stderr = fopen(default_uart_dev, "w");
uart_div_modify(CONFIG_CONSOLE_UART_NUM, (APB_CLK_FREQ << 4) / 115200);
// uartAttach();
ets_install_uart_printf();
uart_tx_switch(CONFIG_CONSOLE_UART_NUM);
ets_printf("*** DEBUG ON\n");
} else {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[1], PIN_FUNC_GPIO);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[3], PIN_FUNC_GPIO);
_GLOBAL_REENT->_stdin = (FILE*) &__sf_fake_stdin;
_GLOBAL_REENT->_stdout = (FILE*) &__sf_fake_stdout;
_GLOBAL_REENT->_stderr = (FILE*) &__sf_fake_stderr;
ets_install_putc1(NULL);
ets_install_putc2(NULL);
}
}
void setupWiFi();
void setupBluetooth();
void setup() {
setDebug(debug);
// put SWD and SWCLK pins connected to SAMD as inputs
pinMode(15, INPUT);
pinMode(21, INPUT);
pinMode(5, INPUT);
if (digitalRead(5) == LOW) {
if (debug) ets_printf("*** BLUETOOTH ON\n");
setupBluetooth();
} else {
if (debug) ets_printf("*** WIFI ON\n");
setupWiFi();
}
}
#define AIRLIFT 1
void setupBluetooth() {
if (debug) ets_printf("setup periph\n");
while (1) {
vTaskDelay(portMAX_DELAY);
}
periph_module_enable(PERIPH_UART1_MODULE);
periph_module_enable(PERIPH_UHCI0_MODULE);
if (debug) ets_printf("setup pins\n");
#ifdef UNO_WIFI_REV2
uart_set_pin(UART_NUM_1, 1, 3, 33, 0); // TX, RX, RTS, CTS
#elif defined(AIRLIFT)
// TX GPIO1 & RX GPIO3 on ESP32 'hardware' UART
// RTS on ESP_BUSY (GPIO33)
// CTS on GPIO0 (GPIO0)
// uart_set_pin(UART_NUM_1, 22, 23, 33, 0);
uart_set_pin(UART_NUM_1, 1, 3, 33, 0);
#else
uart_set_pin(UART_NUM_1, 23, 12, 18, 5);
uart_set_hw_flow_ctrl(UART_NUM_1, UART_HW_FLOWCTRL_CTS_RTS, 5);
#endif
if (debug) ets_printf("setup controller\n");
esp_bt_controller_config_t btControllerConfig = BT_CONTROLLER_INIT_CONFIG_DEFAULT();
btControllerConfig.hci_uart_no = UART_NUM_1;
#ifdef UNO_WIFI_REV2
btControllerConfig.hci_uart_baudrate = 115200;
#elif defined(AIRLIFT)
btControllerConfig.hci_uart_baudrate = 115200;
#else
btControllerConfig.hci_uart_baudrate = 912600;
#endif
esp_bt_controller_init(&btControllerConfig);
while (esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_IDLE) {
if (debug) ets_printf("idle\n");
}
esp_bt_controller_enable(ESP_BT_MODE_BLE);
esp_bt_sleep_enable();
vTaskSuspend(NULL);
while (1) {
vTaskDelay(portMAX_DELAY);
if (debug) ets_printf(".");
}
}
void setupWiFi() {
esp_bt_controller_mem_release(ESP_BT_MODE_BTDM);
if (debug) ets_printf("*** SPIS\n");
SPIS.begin();
if (WiFi.status() == WL_NO_SHIELD) {
if (debug) ets_printf("*** NOSHIELD\n");
while (1); // no shield
}
commandBuffer = (uint8_t*)heap_caps_malloc(SPI_BUFFER_LEN, MALLOC_CAP_DMA);
responseBuffer = (uint8_t*)heap_caps_malloc(SPI_BUFFER_LEN, MALLOC_CAP_DMA);
if (debug) ets_printf("*** BEGIN\n");
CommandHandler.begin();
}
void loop() {
if (debug) ets_printf(".");
// wait for a command
memset(commandBuffer, 0x00, SPI_BUFFER_LEN);
int commandLength = SPIS.transfer(NULL, commandBuffer, SPI_BUFFER_LEN);
if (debug) ets_printf("%d", commandLength);
if (commandLength == 0) {
return;
}
if (debug) {
dumpBuffer("COMMAND", commandBuffer, commandLength);
}
// process
memset(responseBuffer, 0x00, SPI_BUFFER_LEN);
int responseLength = CommandHandler.handle(commandBuffer, responseBuffer);
SPIS.transfer(responseBuffer, NULL, responseLength);
if (debug) {
dumpBuffer("RESPONSE", responseBuffer, responseLength);
}
}